绑定机构
扫描成功 请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
欢迎的朋友
万方知识发现服务平台
获取范围
  • 1 / 1
  (已选择0条) 清除 结果分析
找到 3 条结果
-
CSTPCD 北大核心
-
摘要:相较于降雨充沛的南方,中国北方沙地植被呈现覆盖整体偏低、空间异质性强的特点.灌木作为该区域的优势植被,对于风沙固定、食品/木材供给起着极为重要的作用.针对当前大尺度、中高分辨率干旱地区灌木覆盖度遥感产品缺失的现状,研究提出了一套通过Collect Earth样本收集器进行样本采集、利用Google Earth Engine遥感云平台的数据与计算优势开展大尺度灌木覆盖度估算的方法,并选取中国北方四大沙地之一的毛乌素沙地开展了示范应用.研究结果表明:(1) Collect Earth样本收集器可以有效地获取地面灌木覆盖度样本数据集,可以将灌木与高大乔木与草本植被进行有效区分,为灌木覆盖度估算样本集的建立打下了基础;(2)利用Landsat数据与其他辅助数据,机器学习算法可以较好地实现灌木覆盖度的估算,CART模型确定性系数R2为0.73,均方根误差(Root Mean Square Error,RMSE)为13.66%,预测精度(Estimated Accuracy,EA)为61.8%,SVM模型R2为0.72,RMSE为13.73%,EA为61.6%;(3)提出的基于GEE的灌木覆盖度估算体系可为我国乃至全球尺度干旱地区沙地灌木覆盖度信息提取提供有效支撑,具有较大的应用潜力....
摘要:大区域草地地上生物量估算对草地资源利用管理及全球碳循环研究具有重要意义.为高效快速地估算大区域零散分布草地地上生物量,本文选取安徽省为研究区,在谷歌地球云引擎(Google Earth Engine)平台的支撑下,通过机器学习方法建立Landsat 8 OLI及其他辅助数据与地面实测草地地上生物量之间的联系,开展了草地零散分布地区省级尺度草地地上生物量高分辨率估算,并与传统的基于归一化植被指数(NDVI)回归模型进行了比较.研究结果表明,综合利用光谱与地形因子的机器学习方法,估算零散化分布草地地上生物量的精度可以达到65%以上,其中分类回归树(CART)模型R2=0.57,预测精度为68.60%,支持向量机(SVM)模型R2=0.59,预测精度为75.74%,而使用NDVI的回归分析产生的误差较大,R2=0.37,预测精度为57.51%,因此机器学习方法相对于传统基于NDVI的回归分析具有明显优势.另外,谷歌地球云引擎平台数据来源广泛、获取方便,可以高效地实现海量影像数据的预处理及计算分析,大大提升了工作效率,与地面调查数据的结合可实现更大区域乃至全国尺度上的零散分布草地地上生物量高分辨率遥感估算....
[硕士论文] 陈黔
地图学与地理信息系统 贵州师范大学 2019(学位年度)
  (已选择0条) 清除
公   告

北京万方数据股份有限公司在天猫、京东开具唯一官方授权的直营店铺:

1、天猫--万方数据教育专营店

2、京东--万方数据官方旗舰店

敬请广大用户关注、支持!查看详情

手机版

万方数据知识服务平台 扫码关注微信公众号

万方选题

学术圈
实名学术社交
订阅
收藏
快速查看收藏过的文献
客服
服务
回到
顶部