绑定机构
扫描成功 请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
欢迎的朋友
万方知识发现服务平台
获取范围
  • 1 / 1
  (已选择0条) 清除 结果分析
找到 1 条结果
[硕士论文] 田雪
应用数学 苏州科技学院;苏州科技大学 2018(学位年度)
摘要:Herglotz变分原理是一种广义变分原理,其作用量是由极值存在的微分方程定义的。Herglotz变分原理不仅可以描述所有经典变分原理能够描述的动力学过程,还可以对经典变分原理不能适用的非保守系统和耗散系统进行变分描述,从而可以通过Herglotz变分原理系统地处理保守系统和非保守系统问题。本文基于Herglotz变分原理,分别给出了非保守Lagrange系统以及事件空间中Birkhoff系统的Noether定理与逆定理,并进一步研究时标和分数阶模型上的Noether定理。
  首先,根据Herglotz变分原理,导出非保守Lagrange系统的运动微分方程,给出Herglotz型Noether对称变换的定义与判据,并建立非保守Lagrange系统的Herglotz型Noether定理与逆定理。
  其次,给出事件空间中Birkhoff系统的Herglotz变分原理,导出该系统的参数方程,给出其相应的Herglotz型Noether对称变换的定义与判据,建立事件空间中Birkhoff系统的Herglotz型Noether定理与逆定理。
  再次,研究时标上非保守Lagrange系统和非保守Hamilton系统的Herglotz变分原理及其Noether定理。给出时标上Herglotz变分原理,导出时标上Herglotz型动力学方程,给出Noether对称性的定义并导出其Noether等式,建立时标上Herglotz型Noether定理。
  最后,研究分数阶非保守Hamilton系统和分数阶Birkhoff系统的Herglotz变分原理及其Noether定理。给出系统的分数阶Herglotz变分原理,导出分数阶Herglotz型运动方程,由分数阶Herglotz型Noether对称性的定义,建立相应的Noether定理。
  (已选择0条) 清除
公   告

北京万方数据股份有限公司在天猫、京东开具唯一官方授权的直营店铺:

1、天猫--万方数据教育专营店

2、京东--万方数据官方旗舰店

敬请广大用户关注、支持!查看详情

手机版

万方数据知识服务平台 扫码关注微信公众号

万方选题

学术圈
实名学术社交
订阅
收藏
快速查看收藏过的文献
客服
服务
回到
顶部