绑定机构
扫描成功 请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
欢迎的朋友
万方知识发现服务平台
获取范围
  • 1 / 1
  (已选择0条) 清除 结果分析
找到 3 条结果
摘要:为了实现高泥化煤泥水的高效处理,采用正交试验方法研究高岭石、石英、蒙脱石对高泥化煤泥水沉降、澄清效果的影响规律,并分析各矿物的作用机理.试验结果表明:高岭石对高泥化煤泥水处理的影响最大,蒙脱石次之,石英影响最小;这三种粘土矿物均可在水中泥化成微米级的颗粒,且其表面负电性强,不同颗粒之间存在水化斥力,致使煤泥水处理困难;由于粘土矿物颗粒的表面电位、官能团及水化膨胀性不同,各粘土矿物对高泥化煤泥水的处理效果影响不同.
摘要:为掌握pH值对不同粒度微细高岭石颗粒聚团沉降特性的影响机理,对不同pH值溶液化学环境下的微细高岭石颗粒表面电动电位、官能团和聚团形态进行了测试分析及聚团沉降实验.结果表明:当pH<6时,微细高岭石颗粒表现为强烈的聚团行为且受粒度和pH值影响较小,沉降产率大于80%;当pH>6时,D50<2.72 μm颗粒聚团行为受pH值影响较大,由聚团趋向于分散为主,D50>11.78 μm颗粒聚团行为受pH值和粒度影响较小.溶液pH值和粒度的改变导致高岭石颗粒表面荷电特性、表面官能团、水化特性、解离特性和聚团形式变化是其聚团与分散的微观机理,从而对其聚团沉降效果产生较明显影响.
[硕士论文] 李伟荣
矿物加工工程 安徽理工大学 2017(学位年度)
摘要:高岭石颗粒粒度小、表面荷较强的同性电荷且颗粒间存在水化斥力,在悬浮液中稳定分散,导致煤泥水和某些工业废水难以处理。在工业中,高岭石是一种重要的功能材料。如果将微细高岭石从煤泥水等中分选出来不仅降低煤泥水和相关废水处理难度,而且将其资源化利用。但是煤泥水中的高岭石和煤相关性质复杂,采用目前常规方法难以实现煤泥水中微细高岭石颗粒的提取,迫切需要研究高岭石和煤界面调控方法,以实现微细高岭石矿物高度富集。
  通过聚团沉降试验研究溶液pH、颗粒粒度、金属离子、表面活性剂、非极性油、加药顺序、搅拌速度和搅拌时间对微细高岭石颗粒聚团特性的影响规律,结果表明,当pH<6时,微细高岭石颗粒表现为强烈的聚团行为且受粒度和pH影响较小,沉降产率均大于80%;当pH>6时,D50<2.72μm颗粒聚团行为受pH影响较大,由聚团趋向于分散为主,D50>11.78μm受pH和粒度影响较小;随着K+、Mg2+和Fe3+金属离子浓度增大,沉降产率增加,且随着离子价态的增加效果越明显;十二胺醋酸盐较油酸钠和Tween80更有利于高岭石颗粒聚团沉降;添加非极性油可强化聚团沉降效果;十二胺醋酸盐、柴油和乳化剂Span80添加顺序对聚团沉降影响较小;随着搅拌速度的增大及搅拌时间的增加,沉降产率先增大后变化较小。
  溶液pH、金属离子、分散剂、搅拌速度和搅拌时间对微细煤颗粒分散特性影响规律的研究结果表明:当pH<6时,煤颗粒分散率随着pH值增加而增大;当pH>6时,随着pH值增加而减小;随着K+、Mg2+和Fe3+离子浓度的增大,分散率降低,离子对分散率的影响顺序为:Mg2+> Fe3+> K+;当木质素磺酸钠浓度小于0.2 g/L和大于3.0 g/L时煤颗粒分散率较大,添加腐殖酸钠、a-烯基磺酸钠和羟丙基甲基纤维素对分散率的影响与木质素磺酸钠相似;煤颗粒分散率随Na2SiO3浓度的增加而增大,随Na2CO3和木质素胺浓度的增加反而减小;煤颗粒分散率随着搅拌速度的增大及搅拌时间的增加先增大后趋于不变。
  研究了高岭石与煤配比、矿浆浓度、矿物粒度、溶液pH、金属离子、分散剂、凝聚剂、表面疏水活性剂、搅拌速度、搅拌时间、搅拌方式和分选工艺对微细高岭石颗粒聚团分选的影响规律。结果表明:当高岭石与煤配比为1∶1,矿浆浓度为20%,pH=4.0,高岭石粒度D50>11.78μm,煤粒度<0.045 mm,搅拌速度和时间分别为500 r/min和5min时高岭石聚团分选效果明显;添加K+、Mg2+和Fe3+离子均对高岭石聚团分选不利;聚铝、糊精和磁力搅拌分别较十二胺醋酸盐、木质素磺酸钠和机械搅拌更有利于微细高岭石颗粒聚团分选;二次聚团分选工艺对其聚团分选效果影响较小。
  (已选择0条) 清除
公   告

北京万方数据股份有限公司在天猫、京东开具唯一官方授权的直营店铺:

1、天猫--万方数据教育专营店

2、京东--万方数据官方旗舰店

敬请广大用户关注、支持!查看详情

手机版

万方数据知识服务平台 扫码关注微信公众号

学术圈
实名学术社交
订阅
收藏
快速查看收藏过的文献
客服
服务
回到
顶部