绑定机构
扫描成功 请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
欢迎的朋友
万方知识发现服务平台
获取范围
  • 1 / 1
  (已选择0条) 清除 结果分析
找到 5 条结果
-
CSTPCD 北大核心
-
摘要:为了探明气候变化对长江中下游地区冬小麦潜在产量的影响,基于政府间气候变化专门委员会(IPCC) AR5提出的BCC-CSM1-1(Beijing Climate Center Climate System Model version1-1)气候系统模式输出的基于典型浓度RCP各情景(基准时段baseline、RCP 2.6、RCP 4.5和RCP 8.5)主要气象要素的逐日模拟数据和历史观测数据.通过DSSAT模型模拟历史时期(2001-2009年)冬小麦的物候期和产量,并计算模拟数据与实测数据二者的均方根误差和一致性指数(开花、成熟期和产量模拟结果的相对均方差根误差分别在0.83%-2.98%之间和7%以下,符合度D均接近于1)明确最优遗传参数,应用最优参数模拟加以验证,完成模型参数区域化.结合历史阶段(1961-1990年)和未来时期(2021-2050年)主要气象要素变化趋势,利用DSSAT模型模拟分析未来30年长江中下游地区气候变化对小麦产量的影响及变化趋势,以期为未来作物生产提供理论依据.结果表明,DSSAT-CERES-Wheat品种遗传参数本地化后能准确模拟冬小麦的生长发育过程及产量潜力.较基准年相比,2021-2050年RCP情景下,冬小麦生育期内≥10℃积温除RCP 2.6情景外呈现逐渐增加趋势,增加幅度为RCP 8.5>RCP 2.6>RCP 4.5;降水量年际波动都比较大,区域性差异明显;太阳总辐射量较基准年均有所降低,但降低的幅度随着年份的增加逐渐减小,变化率均呈现显著或极显著的增加趋势.除昆山外冬小麦开花期、成熟期较基准年均有所提前,开花期到成熟期天数则随之缩短.仅考虑气候条件时,长江中下游地区冬小麦产量潜力与基准年减少,昆山、英山下降幅度较滁州、钟祥大(3%-59%),且区域差异明显.分析可得,一定范围内冬小麦产量随积温的增加逐渐增加,超过一定阈值时则逐渐减少,其他气候因子增加或减少并不能弥补积温过低产生的负效应.
-
CSTPCD 北大核心
-
摘要:基于BCC_CSM 1.1全球气候模式RCP气候情景输出的2021-2050年和基准年(1961-1990)逐日气候资料,采用机制法预估长江中下游地区稻麦气候生产潜力,并利用Theil-Sen斜率估计、MK检验和ArcGIS空间分析等方法对稻麦气候生产潜力的年际变化趋势和空间分布特征进行分析,旨在探明影响稻麦气候生产潜力变化的主要气候因子,对评价未来的作物潜在生产能力和制定气候变化的适应性策略具有重要意义.结果表明:基准气候时段下(1961-1990年),长江中下游地区稻麦气候生产潜力分别介于10000-12000 kg/hm2和8000-10500 kg/hm2之间,水稻气候生产潜力总体呈现上升趋势而小麦呈现下降趋势.水稻气候生产潜力在空间上表现为自研究区域中部向南北逐渐增加,冬小麦则呈现北高南低的分布特征;未来两种气候情景下(RCP 8.5和RCP 4.5),稻麦气候生产潜力总体均呈现显著线性增加趋势,表现为RCP 8.5情景大于RCP 4.5.水稻气候生产潜力的增加速率较冬小麦大两倍左右,且年际波动较小,稳定性强.RCP 4.5气候情景下,研究区域内稻麦气候生产潜力总体呈现明显的区域分异,与基准年相比分别增加了3500-5000 kg/hm2和5000-6500 kg/hm2.东部沿海地区、两湖平原地区和江西为稻麦气候生产潜力高值区域.冬小麦气候生产潜力与基准时段相反呈现出由南向北递减趋势,南昌和长江三角洲部分地区呈现出显著增加趋势(>80 kg hm-2 a-1),水稻则表现为自中西部向东南部沿海逐渐增加.在RCP 8.5情景下,冬小麦气候生产潜力较基准年增加了4000-6000 kg/hm2;从地域分布特征看,呈现自东向西逐渐减少的趋势,长江三角洲、南阳盆地和两湖平原为高值区,庐山周边区域(近鄱湖阳湖)变化率高达80 kg hm-2 a-1(P<0.05).水稻气候生产潜力空间分布与基准年相似,仅较基准年增加1000 kg/hm2左右,两湖平原和庐山周边地区和江苏中部大于11000 kg/hm2,较基准年高值区面积有所扩大.长江中下游地区稻麦气候生产潜力受气候变化和地理位置的双重影响.作物生育期内≥10℃积温为主导因子,其次为太阳总辐射,而降水量的影响较小.平原地区作物气候生产潜力较同一纬度地区大.区域农业气候资源在保证足够数量的同时相互协调更是获得高气候生产潜力重要条件.
摘要:[目的]N2O是重要的温室气体之一,主要来源于农田土壤.华北平原是我国的粮食主产区,秸秆还田是该地区主要的农田管理措施,明确不同秸秆还田量对小麦玉米农田周年土壤温度和含水量的影响以及与N2O排放之间的量化关系,对发挥秸秆还田的生态效应,明确硝化和反硝化作用机制具有重要意义.[方法]以冬小麦、夏玉米为研究对象,设置5种不同秸秆还田量处理:小麦、玉米秸秆均不还田(T0);小麦秸秆1875 kg/hm2+玉米秸秆2000 kg/hm2还田(T1);小麦秸秆3750 kg/hm2+玉米秸秆4000 kg/hm2还田(T2);小麦秸秆5625kg/hm2+玉米秸秆6000 kg/hm2还田(T3);小麦秸秆7500 kg/hm2+玉米秸秆8000 kg/hm2还田(T4).于2014年10月~2015年10月,采用静态箱-气相色谱法对农田N2O排放进行测定,探究不同秸秆还田量下小麦玉米农田N2O排放的周年变化,并量化分析土壤温度、含水量与N2O排放的关系.[结果]秸秆还田量显著影响N2O的排放,随着秸秆还田量的增加,周年内N2O排放总量呈增加的趋势,增加量为1.33~3.50 kg/hm2,增加率为32.3%~85.0%;通量增加量为15.52~40.87 μg/(m2.h),增加率为32.3%~85.1%.玉米季N2O排放通量和总量分别是小麦季的2.42~2.62和1.05~1.14倍.秸秆还田可提高0-10 cm土壤温度和0-20 cm土壤含水量,增加范围分别为0.63~2.14℃和0.6%~1.8%.相关性分析表明,各处理土壤温度和N2O排放通量无相关关系(P>0.05).T0、T1、T2处理土壤含水量与N2O排放通量呈显著正相关(P<0.05),而T3、T4处理与N2O排放通量之间不相关(P>0.05).[结论]随着秸秆还田量的增加,N2O排放通量和总量均呈现增加趋势,且玉米季高于小麦季.秸秆还田显著促进N2O排放并可提高0-20 cm土壤含水量和0-10 cm土壤温度,周年秸秆还田量在7750 kg/hm2及以下时,N2O排放通量与土壤含水量之间呈显著正相关,而与土壤温度之间不相关.
摘要:为探明典型浓度路径下(高端路径RCP8.5和稳定路径RCP4.5)长江中下游地区未来30a平均气温的时空变化趋势和分布特征,运用联合国政府间气候变化委员会(IPCC)AR5提出的模拟能力较强的BCC-CSMl-1 (Beijing Climate Center Climate System Model version1-1)气候系统模式,基于典型浓度情景RCP(Representative Concentration Pathway)输出的2021-2050年0.5×0.5格点主要气象要素的逐日模式模拟数据资料,应用双线性内插法降尺度到长江中下游及邻近区域62个基本气象站点.以1961-1990为基准年,根据同期等长模拟数据和观测数据的非线性函数关系建立订正模型,并利用方差订正法对2021-2050年模拟数据进行误差订正.结果表明:RCP情景输出数据的模拟效果良好,方差订正可降低模拟值与观测值的相对误差和方差,更加真实反应未来气候变化趋势.RCP8.5和RCP4.5两种排放情景下,长江中下游地区2021-2050年年平均气温均呈显著上升趋势,增温幅度总体表现为自南向北逐渐减少.就季节而言,四季均呈现升温趋势,夏季增温幅度最高,变化倾向率大,春冬两季RCP8.5情景下增温幅度大于RCP4.5下,夏秋季则相反;RCP8.5情景下,研究区域年平均气温呈现自中部向东西递减,春夏季增温幅度高于秋季,冬季增温幅度最小,且变化倾向率低,大部分地区未通过0.05水平的显著性检验.RCP4.5情景下,研究区年平均气温自北向南逐渐降低,变化倾向率则表现为北部大于南部,夏季变化速率较大,增温幅度达1.2℃·1Oa-1 (P<0.01),冬季较小且未通过显著性检验.
[硕士论文] 刘文茹
作物 山东农业大学 2017(学位年度)
摘要:本文在气候变化大背景下,以长江中下游地区水稻和小麦为研究对象,运用联合国政府间气候变化委员会(IPCC)AR5提出的模拟能力较强的 BCC-CSM1-1(Beijing Climate Center Climate System Model version1-1)气候系统模式,基于典型浓度情景RCP(Representative Concentration Pathway)输出的主要气象要素的逐日模式模拟数据资料,应用双线性内插法降尺度到长江中下游及邻近区域62个基本气象站点,并利用方差订正法对2021—2050年模式模拟数据进行误差订正,以获得更加真实可信的模拟数据。采用经验模型(潜力衰减)和机理模型(DSSAT)预估长江中下游地区稻麦生产潜力,并利用 Theil-Sen斜率估计和 MK检验等方法对未来30年研究区域内稻麦气候生产潜力的年际变化趋势和空间分布特征进行分析,明确主要影响因子,制定适应气候变化的措施,以期为未来作物生产提供理论依据。主要研究结论如下:
  (1)长江中下游地区2021—2050年平均气温、太阳总辐射量呈显著上升趋势,降水量总体增加,幅度较小并未达到显著性水平。全年和春、夏、秋、冬四季太阳总辐射量、降水量在时间上均呈现显著的增加趋势(春夏季>秋冬季)。RCP8.5情景下,研究区域年平均气温呈现自中部向东西递减,春夏季增温幅度高于秋季和冬季。研究区域中部太阳总辐射量较高,而江苏省南部、安徽省中东部及湖北湖南少部地区属于低值区域,季节上表现出春季>夏季>秋季>秋冬的特征。降水量的年际变化不显著,大部分地区有所降低,但也未通过显著性检验。冬季降水量最小,夏季大部分地区降水量最大。RCP4.5情景下,研究区年平均气温自北向南逐渐降低,变化倾向率则表现为北部大于南部,夏季较大,冬季较小且未通过显著性检验。太阳总辐射量的空间分布较 RCP8.5情景相似,春夏季太阳总辐射量高于冬秋季,仅春季江苏省南部地区通过显著性检验,其余地区大都未通过显著性检验。2034年以前太阳总辐射量的较平均低,之后则高于平均值,说明未来30年长江中下游地区20世纪30年代后太阳总辐射量将以更大的速率持续增加。
  (2)应用经验模型模拟基准气候时段长江中下游地区稻麦气候生产潜力分别介于10000~12000 kg/hm2和8000~10500 kg/hm2之间,水稻气候生产潜力总体呈现上升趋势而小麦呈现下降趋势。水稻气候生产潜力在空间上表现为自研究区域中部向南北逐渐增加,冬小麦则呈现北高南低的分布特征;未来两种气候情景下,稻麦气候生产潜力总体均呈现显著线性增加趋势,表现为RCP8.5>RCP4.5。水稻气候生产潜力的增加速率较冬小麦大两倍左右,且年际波动较小,稳定性强。RCP4.5气候情景下,东部沿海地区、两湖平原地区和江西为稻麦气候生产潜力高值区域。冬小麦气候生产潜力与基准时段相反呈现出由就南向北递减趋势,水稻则表现为自中西部向东南部沿海逐渐增加。在 RCP8.5情景下,呈现自东向西逐渐减少的趋势,长江三角洲、南阳盆地和两湖平原为高值区,庐山周边区域(近鄱湖阳湖)变化率高达80 kghm-2·a-1(P<0.05)。长江中下游地区稻麦气候生产潜力受气候变化和地理位置的双重影响。作物生育期内≥10℃积温为主导因子,其次为太阳总辐射,而降水量的影响较小。平原地区作物气候生产潜力较同一纬度地区大。区域农业气候资源在保证足够数量的同时相互协调更是获得高气候生产潜力重要条件。
  (3)DSSAE-CERES模型模拟值与观测值的模拟结果较好,表明品种可较准确地进行模拟研究。分析可知,2021—2050年稻麦生育期内的平均最高、最低温度、≥10℃积温、降雨量和太阳总辐射量的变化将会导致产量的改变。冬小麦和水稻开花期和成熟期日序较基准年均有所推迟,且表现为RCP8.5>RCP4.5,开花期到成熟期天数则随之缩短。表明一定范围内冬小麦产量随积温的增加逐渐增加,超过一定阈值时则逐渐减少,其他气候因子增加或减少并不能弥补积温过高产生的负效应。
  水稻的产量潜力较基准年降低(除钟祥外)。且总体表现为2030s<2040s<2050s, RCP8.5情景下水稻产量下降幅度大于RCP4.5情景。水稻产量降低幅度随着≥10℃积温、平均最高温度的增加而逐渐增大,由于在水稻不同生育期受到高温胁迫会影响水稻的光合速率、呼吸速率等,表明,水稻关键生育时期如若遇到高温灾害,将影响水稻的产量。
  适当推迟冬小麦、水稻的播期,培育耐高温的水稻新品种,增大小麦品种光周期系数,以及加强作物栽培管理措施及加强农业基础设施系统工程的建设,减少温室气体的排放和增加植被的覆盖率,完善气候灾害监测预警及分析系统等,可以减轻气候变化对农业省产造成的影响。
  (已选择0条) 清除
公   告

北京万方数据股份有限公司在天猫、京东开具唯一官方授权的直营店铺:

1、天猫--万方数据教育专营店

2、京东--万方数据官方旗舰店

敬请广大用户关注、支持!查看详情

手机版

万方数据知识服务平台 扫码关注微信公众号

学术圈
实名学术社交
订阅
收藏
快速查看收藏过的文献
客服
服务
回到
顶部